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Identify tissue and cell type-specific functional 
regions in the human genome
We developed GenoSkyline [2], a statistical framework to 
predict tissue and cell type-specific functional regions in 
the human genome. RNA-seq, DNA methylation, and his-
tone marks from Roadmap Epigenomics Project [3] were in-
tegrated to quantify the functional potential of each nucle-
otide. GenoSkyline scores for seven tissue types (brain, GI, 
lung, heart, blood, muscle, epithelium) are readily available. 
We are currently wrapping up GenoSkyline2 annotations 
for 127 various tissue and cell types.

Figure 2. Tissue and cell type-specific enrichment of GWAS signals. (a) Enrichment 
results based on GenoSkyline annotations. For comparison, results for Parkinson’s disease 
and schizophrenia are also shown. (b) Enrichment results based on 28 immune and brain 
cell types in GenoSkyline2. Enrichment p-values were calculated using LD score regres-
sion. The grey lines mark the p-value cutoffs of 0.05 and Bonferroni correction. 

Prioritize GWAS signals through integrating 
summary data and annotations
We have developed GenoWAP (Genome-Wide Association 
Prioritizer), a GWAS signal prioritization method based on 
integrated analysis of GWAS summary statistics and func-
tional annotations [5]. For each SNP, we introduce the fol-
lowing notation. 
  Z: indicator of general functionality;
  ZD: indicator of disease-specific functionality;
            ZT: indicator of tissue-specific functionality;
  p: p-value obtained in GWAS.
We use the following quantity to re-prioritize SNPs.

Identify novel risk loci for LOAD
We identified 11 novel risk loci for LOAD using GenoWAP.

Figure 3. Comparing LOAD GWAS signals in different annotation categories. (a) His-
tograms for p-value distributions. (b) Monocytes-specific functional regions are more 
enriched for LOAD associations than generally functional regions and non-functional re-
gions. 

Figure 4. Local performance of signal prioritization. (a) Annotations could suggest 
functional SNPs within LD blocks. (b-d) Three novel loci successfully replicated in IGAP 
stage-II data. Chr15, TRIP4; Chr17, SCIMP; Chr4, HS3ST1.

Conclusion
Integrative analysis using functional annotations increased 
statistical power and identified 11 novel loci associated 
with LOAD. Several of these novel genes have known func-
tions directly or indirectly related to LOAD etiology. The 
validity of these loci requires further replication using inde-
pendent and larger LOAD cohorts.  Nevertheless, these re-
sults provide novel insights into LOAD etiology.
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Figure 1. GenoSkyline annotations. (a) Number of tissues in which nucleotides are 
functional. (b) Proportion of functional genome for each tissue type. (c) Overlap of func-
tional regions across seven tissue types. The scale is log odds ratio. (d) Comparison of 
GenoCanyon prediction and GenoSkyline scores for seven tissues in HBB gene complex 
region. Red boxes mark the locations of known cis-regulatory modules (CRM). 

Introduction
Genome-wide association studies (GWAS) have identified 
~20 loci associated with late-onset Alzheimer’s Disease 
(LOAD). However, only a modest proportion of the phe-
notypic variance could be explained by significant SNPs, 
suggesting the existence of many more LOAD-associat-
ed loci with small to moderate effect sizes. Here we apply 
state-of-the-art methods to reprioritize LOAD GWAS signals 
through integrative analysis of functional annotations and 
publicly available IGAP stage-I GWAS summary data [1].
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SNPs can be devided into two categories, i.e. (ZT=1) and 
(ZT=0), based on their GenoSkyline scores. Then, f(p|ZT=1) 
can be written as the following mixture.

The beta assumption has been justified through extensive 
simulations [6]. Finally, all the remaining parameters can be 
estimated using the EM algorithm.

We further assume f(p|ZD=0, ZT=1) = f(p|ZD=0) = f(p|Z=0), 
and (p|ZD=1, ZT=1) follows a beta distribution. 

Partition heritability by tissue and cell type
We applied LD score regression [4] on LOAD GWAS, and 
identified tissue and cell types enriched for GWAS signals. 
Signal enrichment was calculated as follows. 

Chr Gene SNP A1 A2 Posterior Beta_IGAP1 P_IGAP1 Beta_IGAP2 P_IGAP2 P_ADGC
3 RPN1 rs62273237 T C 0.955 0.075 2.77E-06 0.019 0.412 0.101
4 HS3ST1 rs6848440 G A 0.952 0.079 4.04E-06 0.050 0.045 0.818
5 HBEGF rs2878896 G A 0.997 0.083 9.22E-08 -0.003 0.913 0.610
10 USP6NL rs12358692 C T 0.964 -0.080 2.34E-06 -0.029 0.226 0.031
14 RPS6KL1 rs76378521 T C 0.988 0.167 4.47E-07 0.057 0.212 0.095
15 TRIP4 rs74615166 C T 0.950 0.336 1.97E-06 0.169 0.017 0.681
15 EFTUD1 rs905450 A G 0.962 -0.087 2.82E-06 -0.028 0.310 0.808
17 MINK1 rs8078173 C T 0.958 0.128 2.87E-06 0.065 0.089 0.120
17 BZRAP1 rs2632516 C G 0.983 -0.078 9.52E-07 -0.036 0.117 0.060
15 FAM96A rs77171973 C T 0.955 0.182 9.55E-06 0.007 0.889 0.947
17 SCIMP rs4456560 T G 0.971 0.107 5.20E-06 0.077 0.022 0.130

Table 1. Eleven novel loci iden-
tified through integrative 
analysis. Loci with posterior 
scores greater than 0.95 are list-
ed. 9 loci were identified using 
GenoCanyon non-tissue-specific 
annotation. Two additional loci 
were identified using GenoSky-
line2-monocytes annotation. 

IGAP1: IGAP stage-I data
IGAP2: IGAP stage-II data
ADGC: ADGC phase-II data

The first assumption essentially says that p-values of SNPs 
in the functional region but irrelevant to the disease should 
behave similarly to p-values of non-functional SNPs. 

Figure 5. Four additional loci with suggestively significant signals in both IGAP 
stage-II and ADGC phase-II data. (a) Chr10, USP6NL; (b) Chr14, RPS6KL1; (c) Chr17, 
MINK1; Chr17, BZRAP1.


