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Identify tissue-specific functional regions in the 
human genome
We developed GenoCanyon [1], an unsupervised-learning 
framework to predict functional non-coding regions in the 
human genome. In this work, we extend the framework 
using epigenomic data from Roadmap Epigenomics Proj-
ect [2] to infer tissue-specific functionality [3]. Eight epig-
enomic marks were integrated to quantify the functional 
potential of each nucleotide. GenoSkyline was found to 
have exceptional performance when it was evaluated using 
well-studied non-coding functional regions. GenoSkyline 
scores for seven tissue types (brain, GI, lung, heart, Blood, 
muscle, epithelium) are currently available.

Figure 2. Tissue-specific enrichment of GWAS signals. Enrichment p-values were cal-
culated using LD score regression. The grey line is the 0.05 cutoff for p-value. 

Prioritize GWAS signals through integrating 
summary data and annotations
We developed GenoWAP (Genome-Wide Association Pri-
oritizer), a GWAS signal prioritization method based on 
integrated analysis of GWAS summary statistics and Geno-
Canyon annotation [5]. In this work, we further extend our 
method to make it compatible with tissue-specific annota-
tions. For each SNP, we introduce the following notations. 
  Z: indicator of general functionality;
  ZD: indicator of disease-specific functionality;
            ZT: indicator of tissue-specific functionality;
  p: p-value obtained in GWAS.
We use the following posterior probability to re-prioritize 
SNPs.

Understand each disease-associated locus
GenoWAP also predicts the most relevant tissue type for 
each risk locus, which is illustrated in Figure 4. This could 
help us understand disease etiology at the locus level.

Figure 3. Reprioritization of schizophrenia GWAS signals. (a) Histograms for p-value 
distributions. (b) Tissue-specific functional regions are more enriched for schizophrenia 
associations than generally functional regions and non-functional regions. (c) Enrich-
ment of GTEx whole-blood eQTLs in top SNPs. (d) Enrichment of human brain quantita-
tive trait loci in top SNPs. 

Figure 4. Local performance of signal prioritization. (a) Results at a schizophrenia risk 
locus on chromosome 8q21 near MMP16 gene. The top and middle panel show p-values 
from PGC 2011 and 2014 studies [7,8], respectively. The bottom panel shows GenoSkyline 
annotations at this locus. (b) Locus plots for tissue-specific posterior scores. 

Conclusion
Through integrating GenoSkyline annotations with GWAS 
summary statistics, we illustrated a variety of ways that 
GenoSkyline could help researchers understand human 
complex diseases. As epigenomic annotation data become 
available for an increasing number of cell types in the fu-
ture, GenoSkyline’s ability to facilitate complex disease 
studies will be further enhanced.
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Figure 1. GenoSkyline annotations. (a) Number of tissues in which nucleotides are 
functional. (b) Proportion of functional genome for each tissue type. (c) Overlap of func-
tional regions across seven tissue types. The scale is log odds ratio. (d) Comparison of 
GenoCanyon prediction and GenoSkyline scores for seven tissues in HBB gene complex 
region. Red boxes mark the locations of known cis-regulatory modules (CRM). 

Introduction
Genome-wide association study (GWAS) has been a pro-
ductive approach to study human complex diseases, yet 
challenges still remain in identifying and interpreting risk 
loci. In this work, we introduce GenoSkyline, a statistical 
framework to predict tissue-specific functional regions in 
the human genome, and illustrate a variety of ways that 
GenoSkyline could benefit post-GWAS analysis. GWAS sig-
nals can be better prioritized when integrating annotations 
of disease-related tissue types. Combining GenoSkyline 
with GWAS results also allow us to partition heritability by 
tissue types and generate new hypotheses regarding the 
disease etiology of many complex diseases. We believe that 
GenoSkyline can guide genetics research and greatly bene-
fit the broader scientific community.

Partition heritability by tissue types
Next, we focus on how GenoSkyline could help us under-
stand human complex traits. We applied LD score regres-
sion [4] on 15 human complex diseases and traits, and 
identified tissue types enriched for GWAS signals. Strati-
fied LD scores were estimated using LDSC software and 
GenoSkyline annotations. For each tissue type, partitioned 
heritability was estimated, and signal enrichment was then 
calculated as follows. 
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SNPs can be devided into two categories, i.e. (ZT=1) and 
(ZT=0), based on their GenoSkyline scores. Then, f(p|ZT=1) 
can be written as the following mixture.

The beta assumption has also been justified through exten-
sive simulations [6]. Finally, all the remaining parameters in 
the posterior probability formula can be estimated either 
directly or using the EM algorithm.

Standard errors of annotation-stratified heritability esti-
mates were assessed using a resampling-based approach 
[4]. Some p-values for tissue-specific enrichment are shown 
in Figure 2.

We further assume f(p|ZD=0, ZT=1) = f(p|ZD=0) = f(p|Z=0), 
and (p|ZD=1, ZT=1) follows a beta distribution. 

The first assumption essentially assumes that p-values of 
SNPs irrelevant to the disease but in the functional region 
should behave similar to p-values of non-functional SNPs.


