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Question 1: How to identify functional regions 
in the human genome?
We developed GenoCanyon [1], a statistical framework to 
predict functional non-coding regions in the human ge-
nome. GenoCanyon is based on unsupervised learning. 22 
diverse types of annotations (2 conservation measures, 2 
open-chromatin indicators, 8 histone modifications, and 10 
transcription factors) downloaded from ENCODE [2] were 
integrated to infer the functional potential of each of 3 bil-
lion nucleotides in the human genome. GenoCanyon was 
found to have exceptional performance when it was evalu-
ated using well-studied non-coding regulatory regions [1]. 

Figure 3. P-value distributions of different functional groups. (a) NIDDK GWAS of 
Crohn’s Disease [4]. (b) COPDGene GWAS of Chronic Obstructive Pulmonary Disease [5]
(non-hispanic white population). From these distributions, we can see that it is crucial 
to use the empirically estimated null distribution instead of the uniform null. The uni-
form null not only overestimates the difference between functional and non-functional 
groups when the signal is strong, it also fails to detect the signal in some studies. 

Application to Crohn’s disease
We applied GenoWAP on a smaller GWAS conducted by 
the North American National Institute of Diabetes and Di-
gestive and Kidney Diseases (NIDDK, n=1,963, [4]) IBD Ge-
netics Consortium, and tested the results using the largest 
meta-analysis for Crohn’s disease done by the International 
Inflammatory Bowel Disease Genetics Consortium (IIBDGC, 
n=21,389, [6]). The top loci based on posterior scores show 
substantially stronger signals in the IIBDGC meta-analysis. 
Top SNPs based on posterior scores also show much stron-
ger enrichment of eQTL.

Application to Schizophrenia
We applied GenoWAP to the PGC2011 study (n=21,856, 
[7]), and evaluated the performance using the 2014 study 
(n=79,845, [8]).

Figure 4. Global performance in studies of Crohn’s disease. (a) Darker color indicates 
stronger signals in the meta-analysis. (b) Enrichment of GTEx whole-blood eQTLs in the 
top SNPs. 

Figure 5. Global performance in studies of Schizophrenia. (a) Darker color indicates 
stronger signals in the PGC2014 study. (b) Enrichment of GTEx whole-blood eQTLs in the 
top SNPs. 

Figure 6. Local performance in studies of Schizophrenia. (a) A risk locus on chromo-
some 3q26. (b) A risk locus on chromosome 8q21. 

Conclusion
Our prioritization method is much more powerful than the 
traditional approach solely based on p-values. Within each 
risk locus, GenoWAP is able to distinguish real signals from 
groups of correlated SNPs. It has the potential to be wide-
ly used to reveal functional variants at disease-associated 
risk loci and guide future studies such as resequencing and 
functional analysis as well as development of treatments.
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Web Servers

GenoCanyon
Non-coding functional annotation
http://genocanyon.med.yale.edu

GenoWAP
Genome-wide association prioritizer
http://genocanyon.med.yale.edu/GenoWAP
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Figure 1. Functional prediction for the HBB gene complex. (a) Dark blue bars indicate 
the prediction scores. All the 23 known cis-regulatory modules are marked in red [3]. Red 
dots indicate the locations of known pathogenic variants in this region. (b) Prediction 
results for the HBB gene and its promoter. The promoter, UTRs, introns and exons are 
marked with different colors. Red dots show the prediction scores of known pathogenic 
variants.

Figure 2. Prediction results for the human X-inactivation Center. All the RefSeq tran-
scripts in this region are plotted. The master lncRNA XIST is highlighted in red. Red dots 
show the locations of known pathogenic variants.

Introduction
Genome-wide association study (GWAS) has been a great 
success in the past decade, with tens of thousands of loci 
identified associated with many complex diseases. Howev-
er, challenges still remain in both identifying new risk loci 
and interpreting results. Bonferroni-corrected significance 
level is very conservative for large-scale hypothesis testing, 
leading to insufficient statistical power when the effect size 
is moderate at each risk locus. Complex dependence struc-
ture among markers, known as linkage disequilibrium, also 
makes it challenging to distinguish causal variants from 
large haplotype blocks. We propose GenoWAP (Genome 
Wide Association Prioritizer), a post-GWAS prioritization 
method that integrates genomic functional annotation and 
GWAS test statistics. 

Question 2: How to use functional annotation 
to help prioritize SNPs in GWAS?
For each SNP, we introduce the following notations. 
		  Z: indicator of general functionality;
		  ZD: indicator of disease-specific functionality;
		  p: p-value obtained in GWAS.
We use the following posterior probability to prioritize 
SNPs.

Based on the definitions of Z and ZD, we transform P(ZD=1) 
into the following form.

SNPs are divided into functional and non-functional sub-
groups according to their GenoCanyon functional scores. 
Then, f(p|Z=0) can be estimated empirically. We further as-
sume f(p|ZD=0) = f(p|Z=0), and (p|ZD=1) follows a beta dis-
tribution. 

Finally, all the unknown parameters in the posterior proba-
bility can be estimated using the EM algorithm.


