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Figure 2. Genetic correlations of 50 complex traits estimated GNOVA. Asterisks highlight significant genetic correlations after 
Bonferroni correction (p < 4.1×10-5). The order of traits is determined by hierarchical clustering.

Annotation-stratified analyses
Next, we stratified all 1,225 pairs of genetic covariance by 
predicted genome functionality, tissue-specific functional-
ity, and minor allele frequencies (MAFs).

Table 1. Acronyms for 50 complex diseases and 
traits.

Figure 4. Annotation-stratified covariance analysis. (A) Stratify genetic covariance 
by genome functionality. Functionality-stratified genetic covariance is concordant with 
non-stratified estimates. (B) Comparison between genetic covariance in the functional 
and the non-functional genome. Solid line marks the expected value based on anno-
tation size. (C) MAF-stratified genetic covariance is concordant with non-stratified esti-
mates. (D) Traits that are uniquely correlated in the lowest MAF quartile. (E) Stratify ge-
netic covariance by tissue type. Each bar denotes the log-transformed p-value. Dashed 
line highlights the Bonferroni-corrected significance level 0.05/(7×1225) = 5.8×10-6.
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Figure 1. Evaluation of covariance estimation and statistical power through sim-
ulations. (A-B) Compare GNOVA and LDSC using traits simulated from a non-stratified 
covariance structure. The covariance estimates are shown in panel A. Panel B shows the 
statistical power. (C-D) Estimate annotation-stratified genetic covariance. The true cova-
riance values are labeled under each setting. Type-I error was not inflated when the true 
covariance was zero.

Model overview 
What is genetic covariance? Assume two traits y1 and y2 fol-
low linear models:

where the genetic effects follow

To estimate genetic covariance, we study the expectation 
of the following quantity

By plugging in K different A matrices and applying the 
method of moments, we get a linear system of K equations

Solving these equations gives us a set of covariance esti-
mates. If we choose

Then the linear system can be represented by GWAS sum-
mary statistics and linkage disequilibrium (LD). 

Or in matrix form:

Figure 3. Comparison 
of genetic correlations 
estimated using GNO-
VA and LDSC. Each 
point represents a pair 
of traits. Overall, genet-
ic correlation estimates 
are concordant between 
GNOVA and LDSC, but 
GNOVA is more powerful 
when genetic correla-
tion is moderate. Color 
and shape of each data 
point represent the sig-
nificance status given by 
GNOVA and LDSC.

An in-depth case study on LOAD and ALS
Finally, we applied GNOVA to dissect the genetic covari-
ance between late-onset Alzheimer’s disease (LOAD) and 
amyotrophic lateral sclerosis (ALS) using publicly available 
GWAS summary statistics (NLOAD = 54,162; NALS = 36,052).

Estimation of pair-wise genetic correlation for 
50 human complex traits
We applied GNOVA to estimate genetic correlations for 50 
complex traits using publicly available GWAS summary sta-
tistics (Ntotal ≈ 4.7 million). Trait acronyms are listed in Table 
1. Out of 1,225 pairs of traits in total, we identified 175 pairs 
with statistically significant genetic correlation after Bon-
ferroni correction. Consistent with our simulation results, 
GNOVA is more powerful when the true genetic correlation 
is moderate.

Theoretical properties and simulations
We proved that the GNOVA estimator is an unbiased esti-
mator with minimum variance.

      Table 2. Dissection of genetic covariance 
between LOAD and ALS. Numbers in parenthe-
ses indicate standard errors. Significant p-values 
after adjusting for multiple testing within each 
section are highlighted in boldface.

      Figure 5. Genetic correlations between 
LOAD, ALS, and 50 complex traits. Significant 
pairs with p < 0.05/(50×2) = 5.0×10-4 are high-
lighted in red.

      Figure 6. Stratification of genetic co-
variance between LOAD and ALS by chro-
mosome. (A) Comparisons of the estimated 
per-chromosome genetic covariance with chro-
mosome size. (B) Comparisons of the estimated 
genetic covariance in the predicted functional 
genome on each chromosome with size of the 
functional genome.

Software availability
The GNOVA software is publicly accessible on Github:
https://github.com/xtonyjiang/GNOVA


